

ADWICE

Advanced Diagnosis and Warning system for aircraft ICing Environments

Sonja Rosczyk, C. Leifeld, T. Hauf

Institute of Meteorology and Climatology (IMUK)
University of Hannover, Germany

A. Tafferner

Institute of Atmospheric Physics German Aerospace Center (DLR) Oberpfaffenhofen Wessling, Germany

H. Leykauf

Business Unit Aviation, German Weather Service (DWD) Offenbach, Germany

ADWICE ...

- has been developed since 1998
- in a joint co-operation between DWD, DLR and IMuK Hannover
- is based on a former NCAR-RAP algorithm (adopted for the European area, meanwhile considerably extended/changed)
- merges forecast model data with hourly observation data
- 1st version has been run pre-operationally at DWD since 2001
- 2nd version is under development at the IMuK Hannover

Use of model data

Relative Humidity, Temperature and Convection scheme data

Local Model (LM) of the German Weather Service (DWD):

- 325 x 325 grid points
- 35 vertical levels
- 7 km horizontal grid spacing
- Start 00 UTC, 12 UTC

Use of surface observations (1)

SYNOP and METAR

- The mean distance between grid point and reporting station is 35 km.
- Observations are related to grid points by Voronoi decomposition.
- Nearly all grid points over land get weather and cloud information from stations within a distance of 70 km.

Use of surface observation (2)

RADAR

- 2 x 2 km² horizontal resolution
- 16 operational radars in Germany
- plus radars from neighbouring countries
- composite images every quarter of an hour

Use of further data

- Satellite images
 - at the moment only NOAA images can be used
 - satellite images from MSG (started in 2002) will be implemented into ADWICE using the applied algorithm
- LWC model data
 - current cloud models and parametrisations are optimized in respect to precipitation instead of LWC
 - new algorithms are under development at the DWD
- PIREPs etc
 - other data sources can be implemented as soon as they are validated

ADWICE characteristics

<u>1st step:</u> Prognostic Icing Algorithm (PIA) → 12 hour forecast fields <u>2nd step:</u> Diagnostic Icing Algorithm (DIA) → hourly diagnostic fields

- 4 different types of icing:
 freezing stratiform convective general
- Icing intensity / Estimation of LWC:
 parcel method using cloud base water vapor mixing ratio

Prognostic Icing Algorithm (ADWICE PIA)

model data

temperature relative humidity convective layer depth

Ţ

Empirical algorithms determine scenarios of icing clouds of different types

+

freezing

convective

stratiform

general

Prognostic Icing Product (PIP)

Diagnostic Icing Algorithm (ADWICE DIA)

observation data
SYNOP/METAR, radar

model data
T, RH, convection

ADWICE PIP

for grid points with no significant surface observations

FUSION:

3D cloud/icing position

ADWICE Diagnostic Icing Product (DIP)

freezing

convective

stratiform

general

SYNOP 19.11.2001 06UTC

Icing at 19.11.2001 06UTC

PIREPs over Central Europe

Methods of Validation

Currently used methods for the validation of ADWICE are:

- Case studies
- PIREPs → Probability of Detection (POD)
- Polls among pilots (e.g. Lufthansa, AeroLloyd)
- Flight deck meteorological observers
- Aircraft equipped with icing sensor (DLR's research aircraft FALCON)

Summary

- Currently ADWICE uses model data, SYNOP, METAR and RADAR data.
- Satellite images (MSG) and SLWC model data will improve the diagnosing and forecasting.
- Case studies show good results for diagnosed icing environments.
- For a statistical evaluation more PIREPs are needed.
- The new version (ADWICE VII) will be implemented in winter 2003/2004.

Thank you for your attention!

Danke für Ihre Aufmerksamkeit!

Je vous remercie de votre attention!

For further information see:

Tafferner et al: ADWICE – The Advanced Diagnosis and Warning system for aircraft ICing Environments; Wea. & Fore. Vol.18, No.2, April 2003

